MARKING SCHEME
 SECTION A

(Each question carries 1 mark) Hints/ Solution

Marks

ASSERTION-REASON BASED QUESTIONS

19 Option (c) A is true, but R is false
20 Option (a) Both A and R are true and R is the correct explanation of A

SECTION B

(Each question carries 2 marks)
21 Given $\mathrm{R}=500, \mathrm{P}=10,000$ and $i=\frac{r}{200}$
$\mathrm{P}=\frac{R}{i}$
$\mathrm{i}=\frac{R}{P}=\frac{1}{20}$

22 As the points $P(3,-2), Q(8,8)$ and $R(k, 2)$ are collinear
Area of triangle $\mathrm{PQR}=\frac{1}{2}\left|\begin{array}{lcl}3 & -2 & 1 \\ 8 & 8 & 1 \\ k & 2 & 1\end{array}\right|=0$
Solving above determinant, we get,

$$
\begin{aligned}
3(8-2)+2(8-k)+1(16-8 k) & =0 \\
18+16-2 k+16-8 k & =0 \\
-10 k+50 & =0 \\
k & =5
\end{aligned}
$$

OR
$A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$

$$
A^{2}-4 A+I=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]-4\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad 1 / 2
$$

$$
=\left[\begin{array}{cc}
7 & 12 \\
4 & 7
\end{array}\right]-\left[\begin{array}{cc}
8 & 12 \\
4 & 8
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\mathrm{O}
$$

Hence proved.
23 Let number of cakes of each kind be x and y
Maximize: $\mathrm{Z}=\mathrm{x}+\mathrm{y}$
Subject to constraints:

$$
\begin{array}{ll}
2 x+y \leq 50 & 1 / 2 \\
x+2 y \leq 40 & 1 / 2 \\
x, y \geq 0 &
\end{array}
$$

$24 \quad 3^{50} \bmod 7=\left(3^{2}\right)^{25} \bmod 7$

$$
\begin{array}{lc}
=(2)^{25} \bmod 7 & 1 / 2 \\
=32^{5} \bmod 7 & \\
=(4)^{5} \bmod 7 & 1 / 2 \\
=(16 \times 16 \times 4) \bmod 7 & 1 / 2 \\
=(2 \times 2 \times 4) \bmod 7 & 1 / 2
\end{array}
$$

Let the rate at which the stream is flowing be $\mathrm{xkm} / \mathrm{hr}$ and let the distance covered by the boat be d km .
Given,

The stream is flowing at the rate of $2.5 \mathrm{~km} / \mathrm{hr}$
25

$$
\begin{aligned}
\frac{d x}{x}+\frac{d y}{y} & =0 \\
\frac{d x}{x} & =-\frac{d y}{y}
\end{aligned}
$$

Integrating both sides,
$\log x=-\log y+\log c$
$\log x y=\log c$
$x y=c$

SECTION C

(Each question carries 3 marks)
26

$$
\begin{aligned}
& \int \frac{x^{2}}{(x-1)(x-2)(x-3)} d x \\
& \frac{x^{2}}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)} \\
& \begin{aligned}
\mathrm{A}=\frac{1}{2}, \mathrm{~B}=-4, \mathrm{C} & =\frac{9}{2}
\end{aligned} \\
& \begin{aligned}
& \int \frac{x^{2}}{(x-1)(x-2)(x-3)} d x=\int \frac{1}{2(x-1)}+\frac{-4}{(x-2)}+\frac{9}{2(x-3)} d x \\
&=\frac{1}{2} \log |x-1|-4 \log |x-2|+\frac{9}{2} \log |x-3|+\mathrm{C} \\
& \quad \begin{aligned}
\int\left(x^{2}+1\right) \log x d x
\end{aligned} \\
& \begin{aligned}
\text { Integrating by parts, }
\end{aligned} \\
& \begin{aligned}
\int\left(x^{2}+1\right) \log x d x & =\log x \int\left(x^{2}+1\right) d x-\int\left((\log x)^{\prime} \int\left(x^{2}+1\right) d x\right) d x \\
& =\log x\left(\frac{x^{3}}{3}+x\right)-\int \frac{1}{x}\left(\frac{x^{3}}{3}+x\right) d x \\
& =\log x\left(\frac{x^{3}}{3}+x\right)-\int\left(\frac{x^{2}}{3}+1\right) d x \\
& =\log x\left(\frac{x^{3}}{3}+x\right)-\left(\frac{x^{3}}{9}+x\right)+C
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned}
\end{aligned}
$$

27

$$
\begin{aligned}
& 3 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}=8 \\
& 2 \mathrm{x}+\mathrm{y}-\mathrm{z}=1 \\
& 4 \mathrm{x}-3 \mathrm{y}+2 \mathrm{z}=4 \\
& \mathrm{AX}=\mathrm{B} \\
& \mathrm{~A}=\left[\begin{array}{ccc}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right], \mathrm{B}=\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right] \\
& \Delta=|A|=\left|\begin{array}{ccc}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{array}\right|=-17
\end{aligned}
$$

$$
\begin{gathered}
\Delta x=\left|\begin{array}{ccc}
8 & -2 & 3 \\
1 & 1 & -1 \\
4 & -3 & 2
\end{array}\right|=-17 \\
\Delta y=\left|\begin{array}{ccc}
3 & 8 & 3 \\
2 & 1 & -1 \\
4 & 4 & 2
\end{array}\right|=-34 \\
\Delta z=\left|\begin{array}{ccc}
3 & -2 & 8 \\
2 & 1 & 1 \\
4 & -3 & 4
\end{array}\right|=-51 \\
x=\frac{\Delta x}{\Delta}=1, \mathrm{y}=\frac{\Delta y}{\Delta}=2, \mathrm{z}=\frac{\Delta z}{\Delta}=3
\end{gathered}
$$

$28 \lambda=3.2$
a) $P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$
$P(X=0)=0.041$
$P(X=1)=0.13$
$P(X=2)=0.21$
$P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)=0.041+0.13+0.21=0.381$
b) $P(X \geq 3)=1-P(X \leq 2)=1-0.381=0.619$
$29 f(x)=2 x^{3}-9 x^{2}+12 x+15$

$$
f^{\prime}(x)=6 x^{2}-18 x+12=0
$$

$$
6(x-2)(x-1)=0
$$

$x=1,2$
The points divide the real line into three intervals $(-\infty, 1),(1,2),(2, \infty)$
$f^{\prime}(x)>0$ in $(-\infty, 1)$ and $(2, \infty)$.
Therefore, $f(x)$ is strictly increasing in $(-\infty, 1)$ and $(2, \infty)$.
$f^{\prime}(x)<0$ in $(1,2)$.
Therefore, $f(x)$ is strictly decreasing in $(1,2)$.
1

OR

$$
\begin{aligned}
& p=35-2 x-x^{2} \\
& p_{0}=20 \\
& 35-2 x-x^{2}=20 \\
& x^{2}+2 x-15=0 \\
& (x+5)(x-3)=0 \\
& \therefore x_{0}=3
\end{aligned}
$$

Consumer's Surplus $=\int_{0}^{x_{0}} f(x) d x-p_{0} x_{0}$

$$
\begin{aligned}
& =\int_{0}^{3}\left(35-2 x-x^{2}\right) d x-60 \\
& =\left[35 x-x^{2}-\frac{x^{3}}{3}\right]_{0}^{3}-60 \\
& =105-9-9-60 \\
& =27
\end{aligned}
$$

$H_{0}: \mu=0.50 \mathrm{~mm}$
$H_{1}: \mu \neq 0.50 \mathrm{~mm}$
$t=\frac{\overline{\mathrm{X}}-\mu}{\mathrm{s}} \sqrt{n-1}=\frac{0.53-0.50}{0.03} \times 3=3$
Since the calculated value of t .e. $\mathrm{t}_{\text {cal }}(=3)>\mathrm{t}_{\mathrm{tab}}(=2.262)$, the null hypothesis H_{0} can be rejected. Hence, we conclude that machine is not working properly.

31 Here $P=9,50,000, i=0.0125$
$\mathrm{n}=48$
Using reducing balance method,

$$
\begin{aligned}
\mathrm{E}= & \frac{P i}{1-(1+i)^{-n}}=\frac{9,5,0000 \times 0.0125}{1-(1+0.0125)^{-48}} \\
& =\frac{11875}{1-(1.0125)^{-48}}=\frac{11875}{1-0.5508565}
\end{aligned}
$$

$$
=₹ 26,439 \cdot 21
$$

SECTION D

(Each question carries 5 marks)
32

$$
\mathrm{A}=\frac{R\left[(1+i)^{n}-1\right]}{i}
$$

$R=10000, n=20, I=10 \%$ p.a.

$$
\mathrm{A}=\frac{10000\left[(1+0.1)^{20}-1\right]}{0.1}
$$

Cost of the machinery = ₹ 573000
If $\mathrm{n}=10$
$\mathrm{A}=\frac{10000\left[(1+0.1)^{10}-1\right]}{0.1}$
Cost of the machinery $=₹ 159400$

OR

i) $\mathrm{D}=\frac{C-S}{n}$, where $\mathrm{C}=$ original cost, $\mathrm{S}=$ scrap value , $\mathrm{n}=$ useful life Here $C=2,00,000 /-\quad, S=10,000 /-$ and $n=6$ years $\mathrm{D}=31666.67$

Therefore annual depreciating cost for her responsibility is Rs31667(approx.)
ii)

YEAR	BOOKVALUE (BEGINNING OF EACH YEAR)	DEPRECIATION	BOOKVALUE (AT THE END OF EACH YEAR)
1	$2,00,000$	31667	168333
2	168333	31667	136666
3	136666	31667	104999
4	734999	31667	41665
5	41665	31667	9998
6			

33 Let x be the number of packages of screws A and y be the number of packages of screws B that the factory manufactures.
Clearly, $x, y \geq 0$.
Total time on machine is $4 \mathrm{hr}=240 \mathrm{~min} \quad 1 / 2$
\therefore for automatic machine,
$4 x+6 y \leq 240 \Rightarrow 2 x+3 y \leq 120$
\therefore for hand machine,
$6 x+3 y \leq 240 \Rightarrow 2 x+y \leq 80$
The profits on Screw A is ₹ 7 and on Screw B is ₹ 10 .
We need to maximize the profits,
i.e. maximize $z=7 x+10 y$, given the above constraints.

The shaded region is the feasible region.
Now,
at $A, z=28$
at $\mathrm{O}, \mathrm{z}=0$
at $E, z=41$
at $\mathrm{D}, \mathrm{z}=40$
Hence, maximum profit is at point $\mathrm{E}(30,20)$, i.e at $\mathrm{x}=30$ and $\mathrm{y}=20$.

34
$C(x)=100+0.025 x^{2}$
$\mathrm{R}(x)=5 x$
$P(x)=R(x)-C(x)$

$$
=5 x-100-0.025 x^{2}
$$

1
$P^{\prime}(x)=5-0.05 x$
If $P^{\prime}(x)=0, x=100$
$P^{\prime \prime}(x)=-0.05$
\therefore Manufacturing 100 dolls will maximize the profit of the company
$P(x)=5 x-100-0.025 x^{2}$
When $x=100, P(x)=500-100-250=150$
Maximum Profit=₹1,50,000

OR

Let each side of the square base of tank be ' x ' cm and its depth be ' y ' cm .
Then, V (Volume of the tank) $=x^{2} y=4000$

$$
y=\frac{4000}{x^{2}}
$$

If ' S ' is the surface area of the tank, then

$$
\begin{aligned}
S & =x^{2}+4 x y \\
& =x^{2}+4 x\left(\frac{4000}{x^{2}}\right) \\
& =x^{2}+4\left(\frac{4000}{x}\right) \\
S^{\prime} & =2 x-\frac{16000}{x^{2}}
\end{aligned}
$$

When $S^{\prime}=0, x=20$

$$
S^{\prime \prime}=2+\frac{32000}{x^{3}}
$$

When $x=20, S^{\prime \prime}=6>0$
$\therefore S$ (The surface area of the tank) is minimum for $x=20 \mathrm{~cm}, y=10 \mathrm{~cm}$
35 Let x, y and z denote the quantity of first, second and third product produced respectively.
$x+y+z=45$

$$
\begin{aligned}
z & =x+8 \\
x+z & =2 y
\end{aligned}
$$

Using Matrix Algebra,
$\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & -2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}45 \\ 8 \\ 0\end{array}\right]$

$$
A X=B
$$

$|A|=6$
$\operatorname{Adj} A=\left[\begin{array}{ccc}2 & -3 & 1 \\ 2 & 0 & -2 \\ 2 & 3 & 1\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{6}\left[\begin{array}{ccc}2 & -3 & 1 \\ 2 & 0 & -2 \\ 2 & 3 & 1\end{array}\right]$

$$
X=A^{-1} B
$$

$$
\begin{aligned}
& =\frac{1}{6}\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -2 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{c}
45 \\
8 \\
0
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{c}
66 \\
90 \\
114
\end{array}\right]=\left[\begin{array}{l}
11 \\
15 \\
19
\end{array}\right]
\end{aligned}
$$

Therefore, the quantity of first, second and third product produced respectively are 11 tons, 15 tons and 19 tons.

SECTION E

(This section comprises of 3 source-based questions (Case Studies) of 4 mark each)

36 Let x, y and z be the time taken by taps A, B and C respectively to drain the tank separately
(i) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{3}$
$\frac{1}{y}+\frac{1}{z}=\frac{1}{2}$
$\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$
Therefore, tap A takes 6 minutes to drain the tank separately.
(ii) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{3}$
$\frac{1}{x}+\frac{1}{z}=\frac{13}{30}$
$\frac{1}{y}=\frac{2}{3}-\frac{13}{30}=\frac{7}{30}$
Therefore, tap B takes $4 \frac{2}{7}$ minutes to drain the tank separately.
(iii) a) $\frac{1}{x}+\frac{1}{y}=\frac{1}{6}+\frac{7}{30}$

$$
=\frac{12}{30}=\frac{2}{5}
$$

Therefore, tap A and B will together take $2 \frac{1}{2}$ minutes to drain the tank separately OR
b) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{3}$

$$
\begin{aligned}
& \frac{1}{z}=\frac{2}{3}-\frac{1}{6}-\frac{7}{30} \\
& \frac{1}{z}=\frac{8}{30}=\frac{4}{15}
\end{aligned}
$$

Therefore, tap C takes $3 \frac{3}{4}$ minutes to drain the tank separately.
(i) a) $0+k+6 k+4 k+2 k=1$

$$
\mathrm{k}=\frac{1}{13}
$$

(i) b) $P(X \leq 3)=0+k+6 k+4 k=11 k=\frac{11}{13}$
(ii) $\quad P(X=2)=6 k=\frac{6}{13}$
(iii) $P(X=4)=2 k=\frac{2}{13}$

Year $\left(x_{i}\right)$	Index Number(Y)	$\mathrm{X}=x_{i}-A$ $=x_{i}-2007$	X^{2}	XY
2004	18	-3	9	-54
2005	20	-2	4	-40
2006	23	-1	1	-23
2007	25	0	0	0
2008	24	1	1	24
2009	28	2	4	56
2010	30	3	9	90
$\mathrm{n}=7$	$\sum y=168$	$\sum X=0$	$\sum X^{2}=28$	$\sum X Y=53$

a $=\frac{\Sigma y}{n}=24$
$\mathrm{b}=\frac{\sum X Y}{\sum X^{2}}=1.89$
$Y=24+1.89 u$
For year 2014 we have
$\mathrm{Y}=24+1.89(2014-2007)=24+1.89 \times 7=37.23$
OR

Year	Index No.	4-year moving total	4-year moving average	Centered total	Centered moving average
1980	400				
1981	470				
		1730	432.5		
1982	450			873	436.5
		1762	440.5		441.125
1983	410			882.25	441.75
		1767	4415		
1984	432	1778	444.5		443.125
				911.5	455.75
1985	475	1868	467		
				946	473
1986	461	1916	479		
				946.75	473.375
1987	500	1871	467.75		
1988	480				
1989	430				

